

ROBOTICS COMPETITION

GUIDE BOOK

Organized By

صندوق الـــوطن Sandooq Al Watan

Powered by

MAKER

Table of Content

Table of Content	
1. Introduction	3
2. Competition Overview	4
2.1 Participation Criteria	4
2.2 Registration & Preparation	5
2.3 Competition Procedure	6
3. Novices & Pioneers	8
3.1 Equipment Specifications	8
3.2 Arena	9
3.3 Team's Blueprint	15
3.4 Robot Game Procedure	19
4. Novices Details	21
4.1 Introduction	21
4.2 Missions	21
4.3 Scoring Cards	29
4.4 Awards	31
5. Pioneers Details	32
5.1 Introduction	32
5.2 Missions	32
5.3 Scoring Cards	42
5.4 Awards	44
6. Novices & Pioneers Guidelines	45
Disciplinary Actions	45
Safety Rules	45
Robot Operation Rules	46
Participants Operation Rules	47
Award Rules	47
Appeal Rules	48
7. Innovators	49
7.1 Introduction	49
7.2 Equipment Specification	50

	7.3 Project Presentation	. 51
	7.4 Assessment Criteria	. 53
	7.5 Awards	. 57
	7.6 Guidelines	. 57
8	. Special Awards	. 59
	8.1 Engineering Storytelling Award	. 59

1. Introduction

Transforming Ideas into Reality

Mubarmij Al Emarat is an engaging innovation competition is designed to inspire students in the fields of robotics, coding, IoT, and AI. At its core, the challenge revolves around hardware construction and programming, aiming to create a dynamic environment that guides students through every stage of project development while igniting a passion for transforming ideas into reality.

Aligning with Sustainable Development Goals

The competition reflects the ethos of SDG 4 (Quality Education) and SDG 9 (Industry, Innovation, and Infrastructure) by providing an inclusive platform for education and innovation. It aims to develop critical thinking skills and creativity among students, fostering holistic development beyond technological proficiency. By emphasizing teamwork and collaborative learning, the Mubarmij Al Emarat Competition supports SDG 17 (Partnerships for the Goals), promoting global cooperation and knowledge sharing.

Mastering Robotics, AI, and IoT

This unique challenge serves as a platform for students to not only showcase their technical expertise but also to cultivate essential life skills such as problem-solving, communication, and collaboration. By participating in the Mubarmij Al Emarat Competition, students engage in hands-on learning experiences that prepare them for the workforce of industry 4.0, and future challenges and opportunities in the rapidly evolving field of robotics, Ai, and IoT.

2. Competition Overview

2.1 Participation Criteria

Students are to participate in teams with a mentor. The categories and age groups for participation are as follows:

Novices

Age Group: 8-13 years

• Team Composition: 2-4 members

Pioneers

Junior Pioneers

o Age Group: 13-18 years

o **Team Composition:** 4 members

Senior Pioneers

o Age Group: 18-24 years

o **Team Composition:** 2-4 members

Innovators

Innovators is divided into three categories based on age groups and complexity levels:

Young Innovators

o Age Group: 7-13 years

o **Team Composition:** 4-6 members

Junior Innovators

Age Group: 13-18 years

Team Composition: 4-6 members

Senior Innovators

Age Group: 18-24 years

o **Team Composition:** 4-6 members

Note: Every team should have 1 mentor aged above 18

2.2 Registration & Preparation

Participating in the competition involves several steps, from initial registration to preparing for the event and acquiring necessary equipment. This section provides a detailed guide to help teams navigate the registration process, prepare adequately, and purchase required kits.

Registration

Visit the Registration Website:

- Go to the official competition website: https://mubarmijalemarat.com/
- Navigate to the 'Registration' section.

o Create an Account:

- Click on 'Register' to create a new account.
- Verify your email address to activate your account.

Complete the Registration Form:

- Log in to your account and access the registration form.
- Fill in the required details such as team name, team members' names, contact information, and school or organization affiliation.
- Provide detailed information about your team, including the age category (Novices, Pioneers, Innovators).
- Fill in any other details that are required in the form.

Preparations

1. Visit Maker & Coder Website

- Go to the official Maker & Coder Website makerandcoder.com
- Browse the available kits and accessories required for the competition.

2. Kit Assembly and Testing:

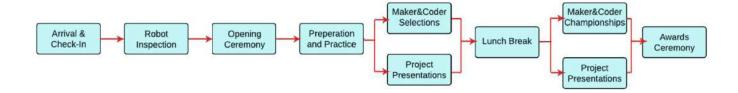
- Assemble the kits as per the instructions provided.
- Test all components to ensure they are functioning correctly before the competition day.


3. Access Preparation Resources:

 Visit <u>learningportal.makerandcoder.com</u> to find a comprehensive course designed to help teams prepare for the competition. The course includes tutorials on robot building, programming, and understanding competition rules.

4. Practice and Training:

- Engage in regular team meetings and practice sessions to build and program your robot.
- Simulate matches to improve performance and strategy.



5. Filling Team Details Form (For Novices and Pioneers)

- Fill out the Team Details Form (Link), which includes information about the team Robot Pilot, IoT Engineer, and other team specifics. (refer to Mubarmij Al Emarat Novices & Pioneers Section for more details)
- Bring this form with you on the competition day for verification.

2.3 Competition Procedure

The competition procedure section outlines the steps and activities that will occur on the day of the competition. This section provides a detailed schedule to help teams understand the flow of events and ensure they are prepared for each phase of the competition day.

Arrival & Check-In

- Participants arrive at the competition venue.
- Teams check in at the registration desk.
- Teams receive their badges, schedules, and any necessary materials.
- Each team submits their Team's Blueprint

Robot Inspection

- Robots must pass inspection to compete.
- If a robot fails, it must be adjusted and re-inspected.

Opening Ceremony

- Welcome speech by the event organizers.
- Introduction of judges and volunteers.
- Overview of the day's schedule and important announcements.

Teams Preparation

- Teams set up their workstations in the designated areas.
- Last-minute preparations and testing of robots.
- Teams ensure their equipment and software are functioning properly.

Project Demonstrations

- Teams present their projects to the judges in the designated areas.
- Each team has 5-10 minutes for their presentation, including Q&A.
- Judges evaluate projects based on creativity, technical skill, and presentation.

Mubarmij Al Emarat Selections

- Each team competes in a single round consisting of two matches.
- Scores from two matches are recorded and averaged for ranking.

Lunch Break

• Teams take a break while scores from the Robot Game Start Round are collected.

Mubarmij Al Emarat Championships

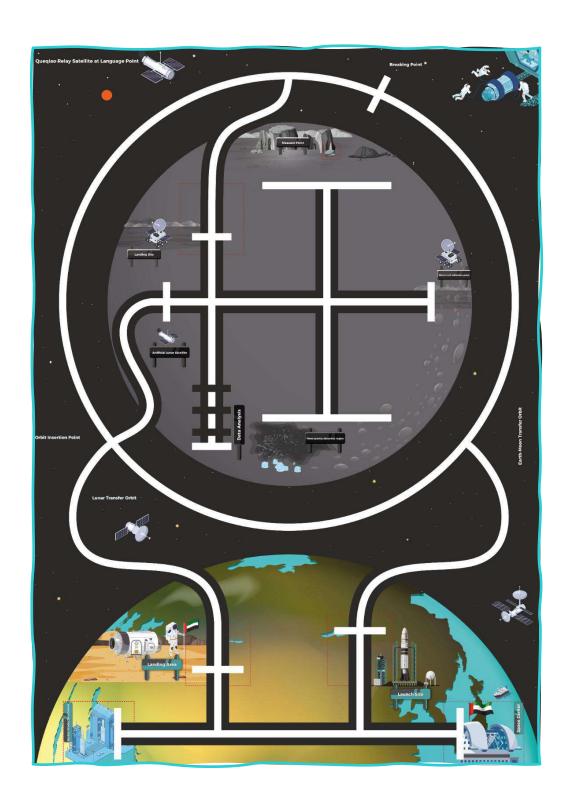
- The top 4 teams based on average scores from the Mubarmij Al Emarat Selections are announced and are given time to modify and improve their robots.
- Teams play one round of two matches each to determine the final two teams.
- The final two teams compete in a round of two matches to determine the champion.

Awards Ceremony

- Announcement of winners in various categories.
- Presentation of awards and certificates.
- Closing remarks by organizers and sponsors.
- Group photo session.

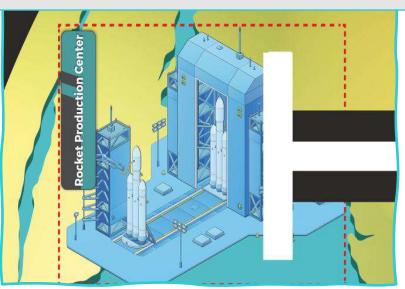
3. Novices & Pioneers

3.1 Equipment Specifications

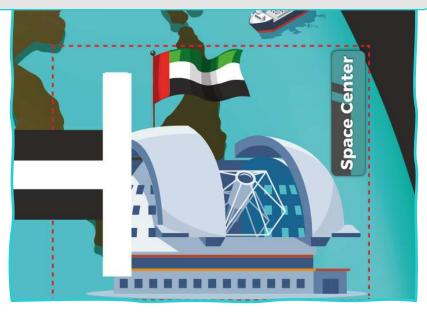

The equipment specification section details the necessary tools, software, and hardware required for participating in the competition. This includes the technical requirements for the robots, the software applications used for programming and control. By adhering to these specifications, teams can ensure their projects are compatible with competition standards in order to perform during the event.

Category	Specification	
Controller	Must use MC 4.0	
Motors & Actuators	Maximum of 4 DC motors with a rated voltage of 6-12V Servos with a torque of up to 10 kg-cm Stepper motors with a resolution of at least 1.8° per step	
Sensors	Any sensor is allowed but up to 5	
Construction Materials	Plastic, aluminum, or composite materials 3D-printed components Laser-cut parts from wood, acrylic, or similar materials Fasteners such as screws, nuts, and bolts	
Programming languages	Support for both block-based and script-based programming (Python preferred for advanced tasks) MC Lab Python Matlab Arduino IDE ROS	

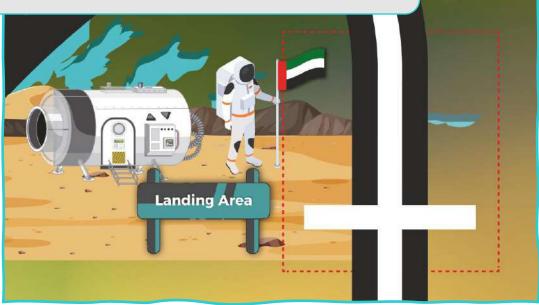
3.2 Arena


Full Arena

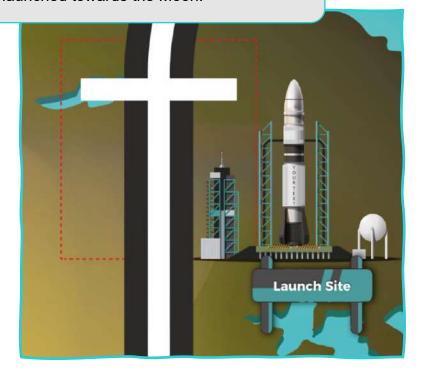
Arena Areas

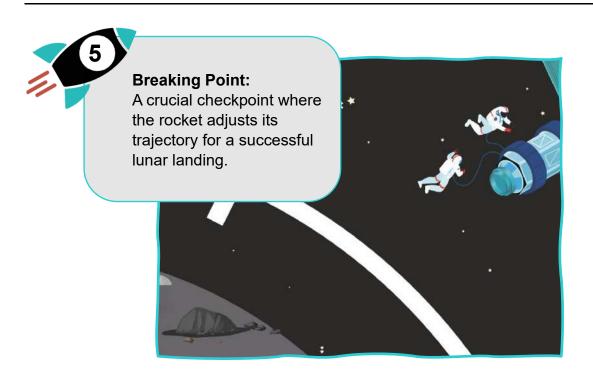


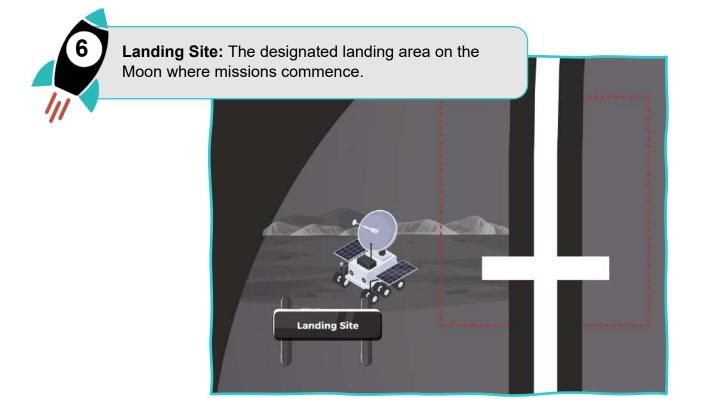
Rocket Production Center: The birthplace of all lunar rockets, where engineers work tirelessly to build and

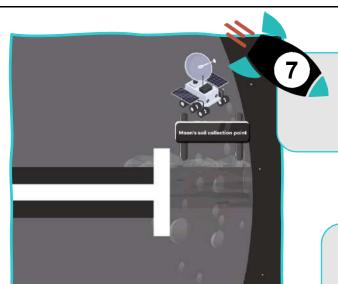


Space Center: The central hub for all lunar operations, coordinating missions and managing

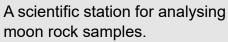


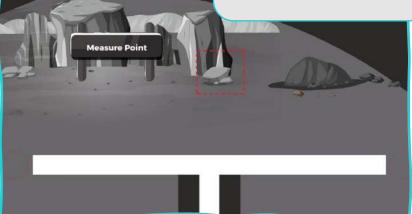

Landing Area: The return point on Earth for safely landing the rocket after the mission.





Launch Site: The gateway to space where rockets are fuelled and launched towards the Moon.

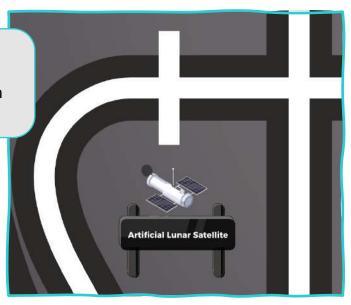


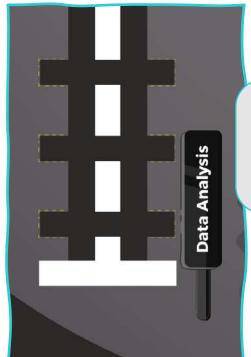


Moon's Soil Collection Point: A research area where moon soil samples are collected for analysis.

Measure Point:

Moon Gravity Abnormal Region:


An area with unusual gravitational properties that require investigation.



Artificial Lunar Satellite:

A satellite orbiting the Moon, used for communication with Earth.

Data Analysis: The lunar research facility where scientists and engineers scrutinize the samples and information gathered during the mission.

Location Names of Moon Samples

3.3 Team's Blueprint

The Team's Blueprint is your opportunity to showcase the unique identity, creativity, and engineering brilliance of your team. This section goes beyond the robot's performance on the competition field, focusing on how your team collaborated, problem-solved, and innovated. Central to this blueprint is the design and integration of a custom 3D-printed part—an essential element that combines creativity and functionality to enhance your robot's performance. Through this portfolio, your team will demonstrate not just technical skill, but also teamwork, strategic planning, and a strong sense of identity. It's your chance to tell your story and make your mark!

Table of Contents for Blueprint

1. Title Page

- o Team name, logo, and slogan.
- Brief overview of the team and its identity.

2. 3D-Printed Innovation

- Engineering purpose and functionality of the 3D-printed part.
- CAD designs and technical drawings.
- o Explanation of the part's integration into the robot's functionality.

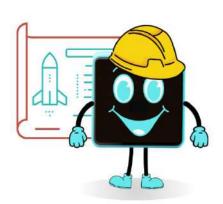
3. Team Background

- Team member introductions and roles.
- o Inspiration behind the team name, logo, and slogan.

4. Collaboration Process

- o Teamwork during the robot-building journey.
- Problem-solving strategies and milestones.

5. Design Aesthetics


Visual branding materials such as posters and uniforms.

6. Reflection & Final Implementation

- Lessons learned and competition journey overview.
- Final robot and 3D-printed integration summary.

7. Team Learning Milestones

- o Show all team members' Mubarmij Al Emarat course certificates.
- o Highlight key skills each member gained and applied to the project.

Instructions for Each Section

1. Title Page

What to Include:

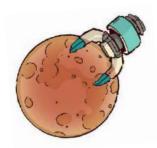
- Clearly display the team name, logo, and slogan.
- Provide a brief overview of your team, highlighting its core values and mission.

Visual Suggestions:

Include a clean and creative title page layout with team colors and logos.

2. 3D-Printed Innovation

What to Include:


- **Engineering Purpose**: Clearly describe the purpose of the 3D-printed part and how it contributes to the robot's functionality.
- **Design Process:** Document the design process with CAD drawings, technical dimensions, and labelled features.
- **Integration:** Show how the 3D-printed part is integrated into the robot, enhancing its functionality for competition missions.
- **Usage Explanation:** Include a detailed explanation of how the part performs during specific tasks.

Examples:

- A gripper attachment for picking up moon samples.
- A custom sensor mount for improving mission accuracy.
- Structural enhancements tailored for competition tasks.

Visual Suggestions:

- Photos: Show the part during integration and testing.
- CAD Screenshots: Highlight key features and dimensions.
- Annotated Images: Explain how the part interacts with the robot.

3. Team Background

What to Include:

- Brief introductions of team members, highlighting their roles (e.g., designer, programmer, strategist).
- Share the inspiration behind the team name, logo, and slogan.

Visual Suggestions:

Team photos, brainstorming snapshots, or concept sketches for the logo and slogan.

4. Collaboration Process

What to Include:

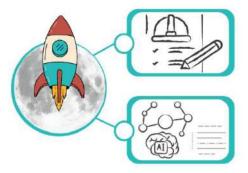
- Summarize how your team worked together during the robot-building process.
- Highlight challenges faced and how they were solved.
- Document task assignments and milestone achievements.

Examples:

- A timeline of key tasks.
- Evidence of collaboration such as meeting notes or diagrams.

Visual Suggestions:

- Process charts or infographics.
- Photos of teamwork in action.


5. Design Aesthetics

What to Include:

- Showcase any branding materials created by the team, such as posters, banners, or uniforms.
- Explain how these materials reflect the team's identity and mission.

Visual Suggestions:

- High-quality images of posters and promotional materials.
- Photos of team uniforms or other visual elements.

6. Reflection & Final Implementation

What to Include:

- Reflect on your team's journey, including key lessons learned and improvements made along the way.
- Include key parts of the robot's code showing logic and control flow. Highlight sections that handle tasks like line following, object detection, or task-specific functions.
- Provide a final summary of the robot's performance, highlighting the role of the 3D-printed part.

Visual Suggestions:

- Before-and-after photos showing the progression of your design.
- Individual quotes or reflections from team members.
- Flowcharts or Pseudocode showing the structure of the programs written.

7. Team Learning Milestones

- Include digital copies of each team member's Mubarmij Al Emarat course certificates that can be found at this link.
- Explain briefly how the skills learned through the course were applied in designing, building, or programming the robot.

3.4 Robot Game Procedure

This section outlines the detailed procedure for the robot game segment of the competition. It provides a step-by-step guide for teams to follow, ensuring a smooth and organized flow of events. Referees will make specific calls before and after each match to guide the participants through the process. Teams must be prepared and comply with the instructions to maintain the competition's integrity and fairness.

Preparation (5 Minutes)

- Teams arrive at the competition area and set up their robots on the starting area.
- Teams place their devices showing MC Cloud or AWS in the designated area as indicated by the
- Referee checks that all equipment is correctly placed and functioning.

Match 1 (4 Minutes)

- Referee announces, "Match 1 will start in 3, 2, 1, go!" and starts the timer.
- Teams execute their pre-programmed tasks and missions within the given time.
- Referee keeps track of the time and announces a 1-minute warning before the end of the match.
- At the end of the 4 minutes, the referee announces, "Match 1 is over. Stop your robots."

Modification (3 Minutes)

• Teams can modify their robot during this time.

Match 2 (4 Minutes)

- Referee announces, "Match 2 will start in 3, 2, 1, go!" and starts the timer.
- Teams execute their pre-programmed tasks and missions within the given time.
- Referee keeps track of the time and announces a 1-minute warning before the end of the match.
- At the end of the 4 minutes, the referee announces, "Match 2 is over. Stop your robots."

Finalizing Score (5 Minutes)

- Referee and scoring officials review the performance and record the points for each team.
- Referee announces, "We are now finalizing the scores."
- Teams may be asked to verify certain actions or results from their matches.
- The final scores for both matches are confirmed and teams will be asked to sign the paper.

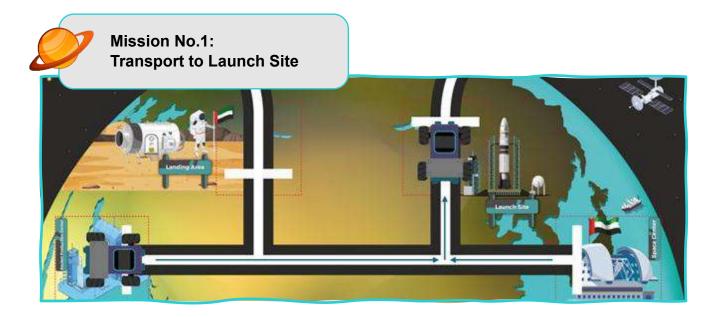
Departure

- Referee announces, "Please gather your equipment and leave the competition area."
- Teams collect their robots and devices, ensuring they leave nothing behind.
- Teams exit the competition area, making way for the next group to begin their preparation.

4. Novices Details

4.1 Introduction

About Novices



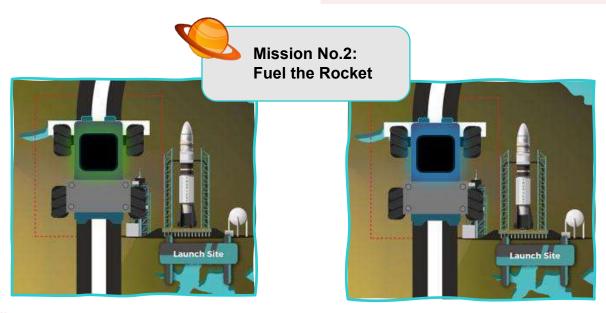
The Novices category is designed for young participants aged 8-13, providing them with an exciting opportunity to explore robotics, programming, and IoT in a fun, hands-on environment. The aim is to introduce these budding innovators to the basics of robotics, programming, and teamwork through engaging challenges.

Background Story

The year is 2040, and humanity has established a lunar base as a stepping stone for deeper space exploration. The mission of the Novices is to assist in critical operations on the Moon. These operations include transporting rockets, fuelling them, launching missions, collecting and analysing moon soil samples, and communicating with Earth. Each task is crucial for the success of the lunar base and future missions to Mars and beyond.

4.2 Missions

Background Story:

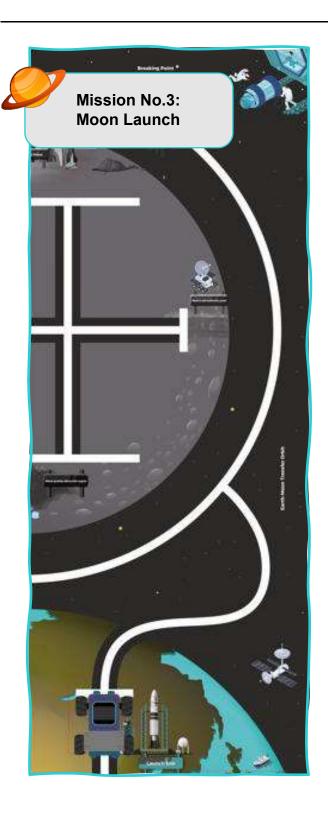

The rocket, built at the Rocket Production Center, needs to be transported to the Launch Site for its mission to the Moon. This transportation phase is crucial as it marks the beginning of the mission and ensures that the rocket is positioned correctly for launch.

Task:

The robot must transport itself from either the Rocket Production Center or Space Center to the Launch Site. Extra points are awarded if starting from the Rocket Production Center.

Scoring Criteria:

- Successfully stop within the red area (10 points)
- Start from Rocket Production Center (BONUS 10 points)
- Screen shows successful rocket transport (extra 5 points)
- MC Cloud shares launch status (extra 5 points)

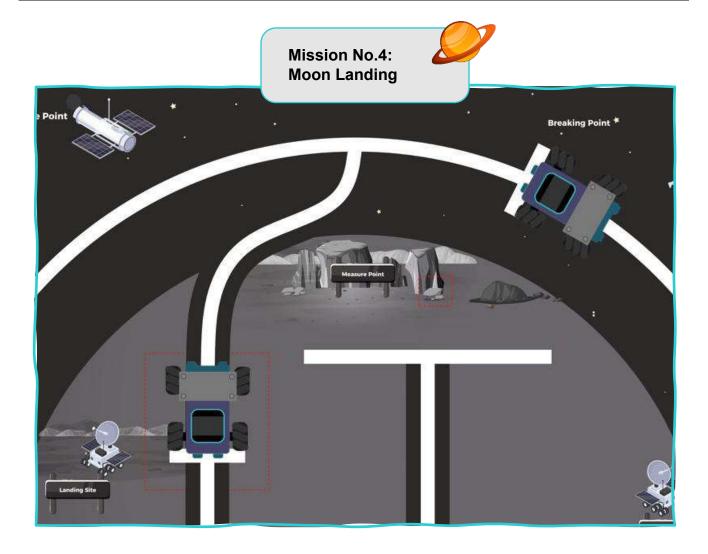

Storyline:

Before the rocket can launch, it needs to be fully fuelled. This process involves ensuring that the rocket has enough fuel to reach its destination and carry out its mission objectives. The robot plays a vital role in indicating the fuel status and ensuring that the rocket is ready for launch.

Task:

The robot must change the color on the controller from red to green to indicate the fuel status.

- Successful color change of RGB (10 points)
- Screen shows fuel status change (extra 5 points)
- MC Cloud shows fuel level(extra 5 points)



The rocket must follow the launch sequence and reach the Breaking Point to adjust its trajectory towards the Moon. This phase is critical for ensuring that the rocket is on the correct path for a successful lunar landing and mission execution.

Task:

The robot follows the line from the Launch Site to the Breaking Point.

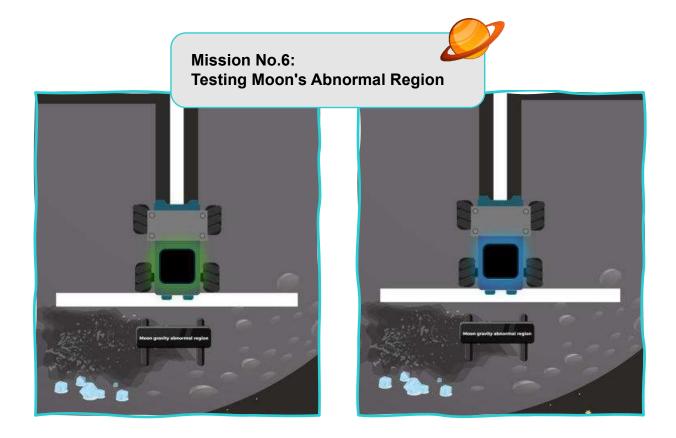
- Stop at Breaking Point (10 points)
- Screen shows status (extra 5 points)
- MC Cloud shares status (extra 5 points)

The rocket lands on the Moon, marking the beginning of its lunar mission. A successful landing is crucial for the continuation of the mission, allowing the robot to carry out various tasks on the lunar surface.

Task:

The robot moves from the Breaking Point to the Moon Landing Site at a reduced speed than what it was moving in before.

- Move at a reduced speed and stop within the landing site (10 points)
- Screen shows moon landing (extra 5 points)
- MC Cloud shares status (extra 5 points)

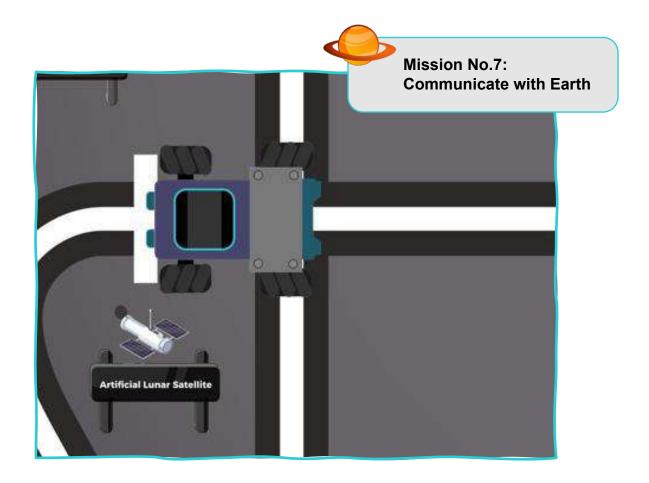


The lunar mission involves collecting valuable soil samples from the Moon's surface. These samples are essential for scientific research, helping scientists understand the Moon's composition and history. The robot must carefully collect and transport these samples, simulating the meticulous work done by lunar rovers and astronauts.

Task:

The robot goes to the measure point, picks up a rock sample, and places it in the moon soil collection point. The sample needs to be dropped within the circular area to get points, with more points awarded for higher accuracy.

- Drop within the largest circle (10 points)
- Drop within the middle circle (15 points)
- Drop within the smallest circle (20 points)
- Screen shows status (extra 5 points)
- MC Cloud shares status (extra 5 points)

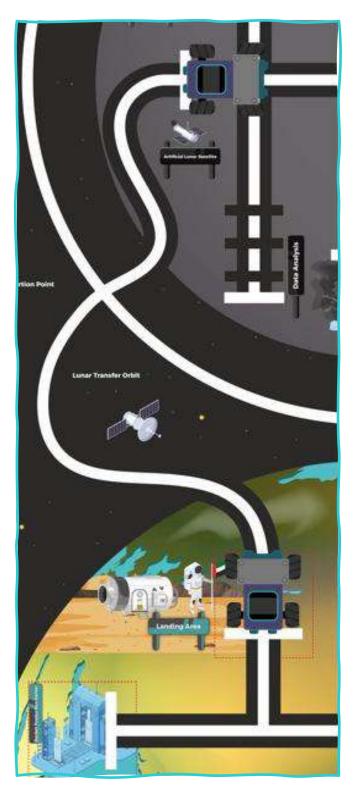


The robot investigates an area with unusual gravitational properties. This mission highlights the exploration and discovery aspects of lunar missions. By testing the Moon's abnormal regions, scientists hope to uncover new insights about the lunar environment. The robot must navigate and conduct experiments in these areas, reflecting the innovative spirit of space exploration.

Task:

The robot goes to the moon gravity abnormal region and changes the LED color and shows the value of the reading on the screen.

- Successful LED change and reading on the screen (15 points)
- MC Cloud shares status (extra 5 points)



The robot communicates the mission's progress back to Earth using the artificial lunar satellite. Effective communication is crucial for the success of space missions. This task simulates the real-time updates sent by astronauts and rovers to mission control on Earth, ensuring that all mission details are accurately relayed for analysis and decision-making.

Task:

The robot stops at the artificial lunar satellite to communicate with Earth.

- Successful stop (10 points)
- Screen shows communication (extra 5 points)
- MC Cloud shares status (extra 5 points)
- Publish on MC Cloud the time it took to fly from the launch area to the moon landing site. (BONUS 20 points)

After completing all lunar operations, the robot must ensure a safe return to Earth. This final mission symbolizes the successful completion of the lunar expedition, bringing back valuable data and samples for further study. The robot's journey back represents the culmination of all efforts, ensuring that the mission's findings are safely delivered.

Task:

The robot must go and stop at the landing area.

- Successful stop within the red area (10
- Screen shows status (extra 5 points)
- MC Cloud shares status (extra 5 points)

4.3 Scoring Cards

Novices Scoring Card

Novices Scoring							
Mission	Base Points	Extra Points (Screen UI)	Extra Points (MC Cloud)	Bonus Points	Max Points	Match 1	Match 2
Transport to Launch Site	10	5	5	10	30		
Fuel the Rocket	10	5	5		20		
Moon Launch	10	5	5		20		
Moon Landing	10	5	5		20		
Collecting Moon Soil Samples	10/15/20	5	5		30		
Testing Moon's Abnormal Region	15	5			20		
Communicate with Earth	10	5	5	20	40		
Returning to Earth	10	5	5		20		
All Points	95	40	35	30	200		
Total Time							
Final Points (Added Points from Match 1 and Match 2)							

Team Captain Signature:
Referee Signature:
Date:

Teams Blueprint Scoring Card

Team's Blueprint Scoring Card				
Dimension	Evaluation Criteria	Points	Comments	
	Quality of the design and engineering of the 3D-printed part.	/5		
3D-Printed Component	Integration of the 3D-printed part into the robot's functionality.	/10		
	Explanation of how the 3D-printed part enhances robot performance.	/5		
Programming	Assess the logic, efficiency, and complexity of the code written for the robot's tasks.	/15		
	The use of C++ to achieve the robot's tasks	/10		
Toom Branding	Creativity and alignment of team identity elements with the competition's theme.	/10		
Team Branding	Representation of team spirit and collaboration through visuals or designs.	_/10		
Technical Documentation	Clarity and organization of the Team's Blueprint (includes explanations, diagrams, and visuals)	_/20		
Course Completion Certificates	All team members have completed the Mubarmij Al Emarat course and earned certificates.	/15		
Total Score				

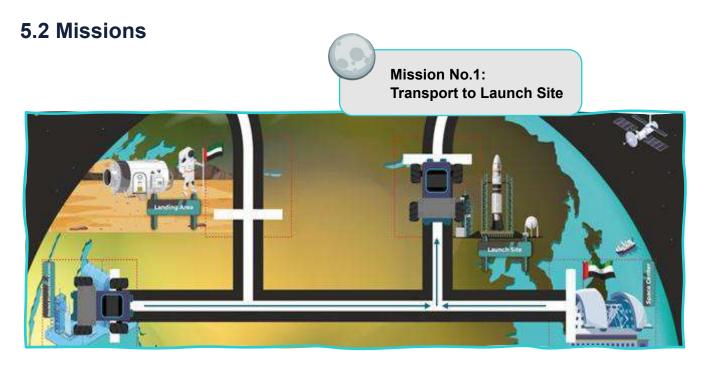
leani ivanie	•
Category	
Jategory	:
udge Name	:
Feedback Summary:	
General observations	s, highlights, and areas for improvement)
udge's Signature	:
Date	:

4.4 Awards

Awards Table for Novices Category				
Award Category	Award Name	Criteria		
Based on Points	Champion Award	Highest score based on missions. Time		
	Champion Award	used as tie-breaker.		
	1st Runner-Up	Second highest score based on missions.		
	1st Kullier-Op	Time used as tie-breaker.		
	2nd Runner-Up	Third highest score based on missions.		
		Time used as tie-breaker.		
		The Blueprint Innovators Award		
	Blueprint Engineers Award	recognizes the team that exemplifies		
Based on Team's Blueprint		outstanding creativity, engineering		
	Awaiu	excellence, and strategic thinking in		
		developing their Team's Blueprint		

5. Pioneers Details

5.1 Introduction

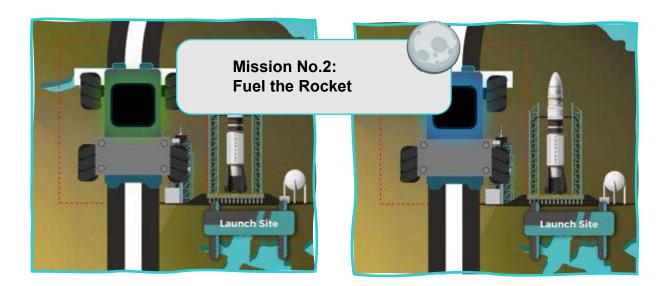

About Pioneers:

The Pioneers category is designed for participants aged 13-24, divided into two age groups (13-18 and 18-24). This category offers more advanced challenges in robotics and coding, emphasizing problem-solving, innovation, and the integration of advanced technologies such as AI, IoT, and machine learning.

Background Story:

The year is 2040, and humanity has established a lunar base as a stepping stone for deeper space exploration. The mission of the Pioneers is to assist in critical operations on the Moon. These operations include transporting rockets, fueling them, launching missions, collecting and analyzing moon soil samples, and communicating with Earth. Each task is crucial for the success of the lunar base and future missions to Mars and beyon.

Background Story:

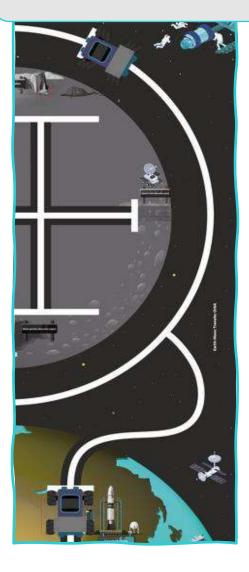

The rocket, built at the Rocket Production Center, needs to be transported to the Launch Site for its mission to the Moon. This transportation phase is crucial as it marks the beginning of the mission and ensures that the rocket is positioned correctly for launch.

Task:

the robot must transport the rocket from either the Rocket Production Center or Space Center to the Launch Site. Extra points are awarded if starting from the Rocket Production Center.

Scoring Criteria:

- Successfully stop within the red area (10 points)
- Start from Rocket Production Center (BONUS 5 points)
- Screen shows successful rocket transport (extra 5 points)
- MC Cloud shares launch status (extra 5 points)


Storyline:

Before the rocket can launch, it needs to be fully fueled. This process involves ensuring that the rocket has enough fuel to reach its destination and carry out its mission objectives. The robot plays a vital role in indicating the fuel status and ensuring that the rocket is ready for launch.

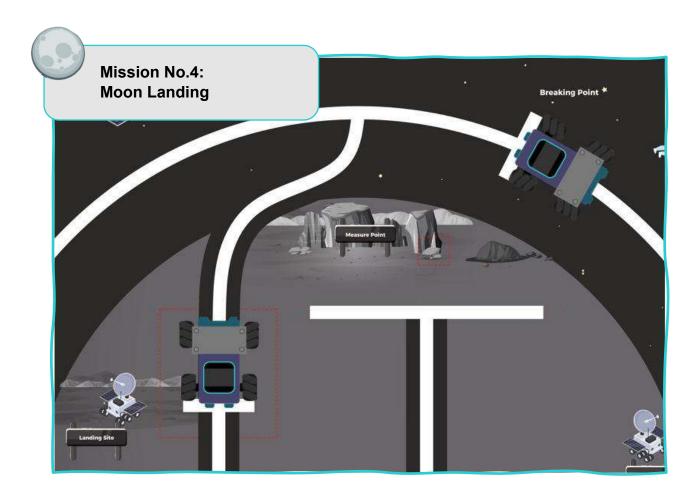
Task:

The robot must change the color on the controller from red to green to indicate the fuel status.

Mission No.3: **Moon Launch**

Scoring Criteria:

- Successful color change of RGB (10 points)
- Screen shows fuel status change (extra 5 points)
- MC Cloud shows fuel level (extra 5 points)
- MQTT shares fuel status on APP (extra 10 points)


Storyline:

The rocket must follow the launch sequence and reach the Breaking Point to adjust its trajectory towards the Moon. This phase is critical for ensuring that the rocket is on the correct path for a successful lunar landing and mission execution.

Task:

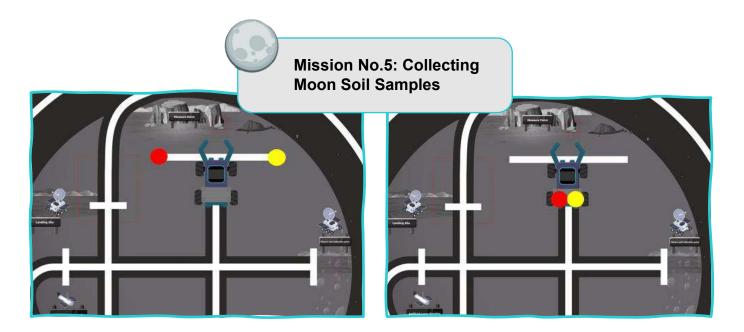
The robot follows the line from the Launch Site to the Breaking Point after 2 Revolutions around the moon.

- Stop at Breaking Point after 1 revolution around the moon (20 points)
- Screen shows status (extra 5 points)
- MC Cloud shares status (extra 5 points)
- MQTT shares status on APP (extra 10 points)

The rocket lands on the Moon, marking the beginning of its lunar mission. A successful landing is crucial for the continuation of the mission, allowing the robot to carry out various tasks on the lunar surface.

Task:

The robot moves from the Breaking Point to the Moon Landing Site.


Scoring Criteria:

Stop within the landing site (10 points)

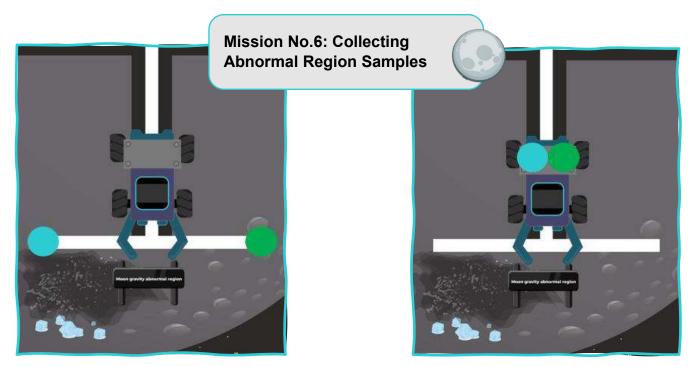
Screen shows moon landing (extra 5 points)

MC Cloud shares status (extra 5 points)

MQTT shares status on APP (extra 10 points)

The lunar mission involves collecting valuable soil samples from the Moon's surface. These samples are essential for scientific research, helping scientists understand the Moon's composition and history. The robot must carefully collect and transport these samples, simulating the meticulous work done by lunar rovers and astronauts.

Task:


The robot goes to the measure point and pick-up two-coloured samples.

Note: The coloured samples (blue/red/yellow/green) position will be random.

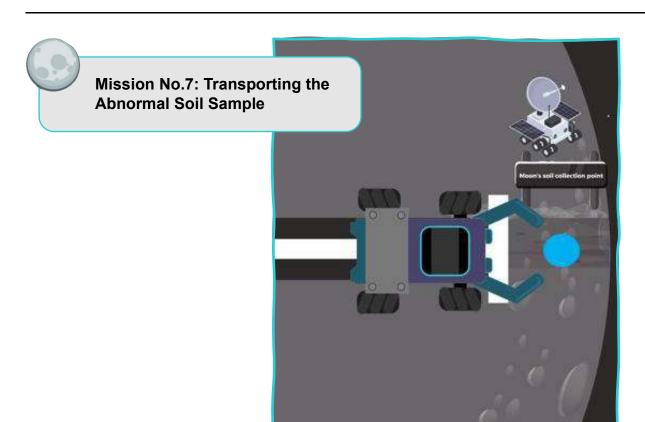
Scoring Criteria:

The robot must pick up each cylinder and carry it to the Earth area (if not blue); placing it back on the Moon will not earn points. (10 points each)

- Screen shows status of what samples have been collected (extra 5 points)
- MC Cloud shares status about samples that have been collected (extra 5 points)
- MQTT shares detailed status of what coloured samples have been collected (extra 10 points)
- If blue is positioned there it is recognized to be picked to the moon soil collection point (using RGB sensor Bonus 10 points) (using Al camera Bonus 15 points)

The robot investigates an area with unusual gravitational properties. This mission highlights the exploration and discovery aspects of lunar missions. By testing the Moon's abnormal regions, scientists hope to uncover new insights about the lunar environment. The robot must navigate and collect additional samples in these areas.

Task:

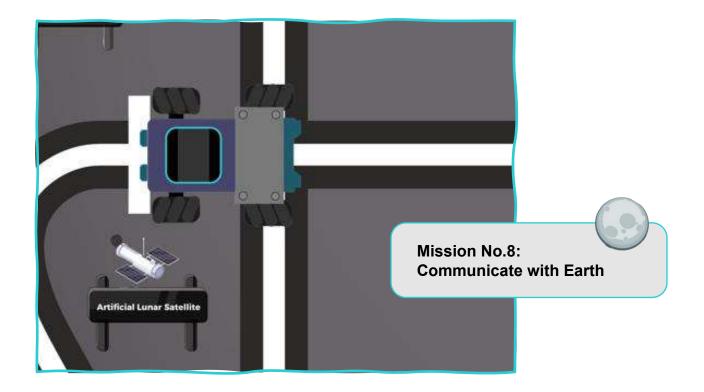

The robot goes to the moon gravity abnormal region and pick-up two-coloured samples.

Note: The coloured samples (blue/red/yellow/green) position will be random.

Scoring Criteria:

The robot must pick up each cylinder and carry it to the Earth area (if not blue); placing it back on the Moon will not earn points. (10 points each)

- Screen shows status of what samples have been collected (extra 5 points)
- MC Cloud shares status about samples that have been collected (extra 5 points)
- MQTT shares detailed status of what coloured samples have been collected (extra 10 points)
- If blue is positioned there it is recognized to be picked to the moon soil collection point (using RGB sensor Bonus 10 points) (using Al camera Bonus 15 point)

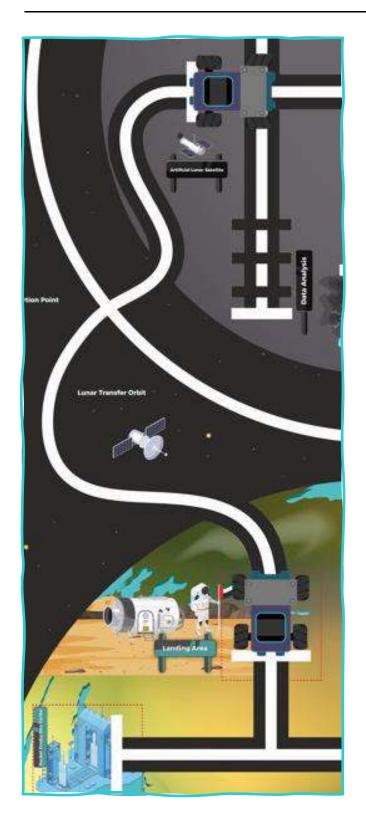


The collected samples need to be placed precisely to ensure accurate analysis. This task emphasizes the importance of precision in scientific research.

Task:

The robot must place the blue sample in the circular area at the moon soil collection point. The more accurate the placement, the more points awarded.

- Place within the largest circle (10 points)
- Place within the middle circle (15 points)
- Place within the smallest circle (20 points)
- Screen shows status (extra 5 points)
- MC Cloud shares status (extra 5 points)
- MQTT shares status (extra 10 points)



Effective communication is crucial for the success of space missions. The robot must confirm mission status and request permission to return to Earth.

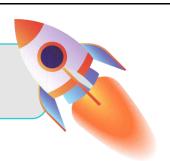
Task:

The robot stops at the artificial lunar satellite to communicate with Earth. Points are awarded only if MC Cloud confirms the communication, and the Robot Pilot must accept the request to proceed.

- Successful communication confirmed by MC Cloud (20 points)
- Share information through MC Cloud or MQTT about the following details (Bonus 20 points):
 - Time it took the rocket to fly from the launch site to the moon landing area
 - Time it took to finish the moon missions

Mission No.9: Running to Earth

Storyline:


After completing all lunar operations, the robot must ensure a safe return to Earth. This final mission symbolizes the successful completion of the lunar expedition, bringing back valuable data and samples for further study. The robot's journey back represents the culmination of all efforts, ensuring that the mission's findings are safely delivered.

Task:

The robot must go and stop at the landing area.

- Successful stop within the red area (10 points)
- Screen shows status (extra 5 points)
- MC Cloud shares status (extra 5 points)
- MQTT shares status (extra 10 points)

BONUS MISSION: Data Integration with AWS/Azure

Storyline:

In this advanced stage of the mission, the robot must utilize cloud computing services to store and analyze data collected during the lunar expedition. This step is crucial for leveraging the power of advanced data analytics and ensuring that the data is securely stored and accessible for future missions. By integrating with AWS or Azure, teams can simulate real-world applications of cloud technology in space exploration, showcasing their ability to handle complex data operations.

Task:

At the end of the mission, the robot must use AWS or Azure to transmit the collected data. This includes:

- Status updates of all previous missions.
- Analysis results from the Data Analysis mission.
- Confirmation of communication with Earth and return status.

- 20 points: Connect to AWS/Azure
 - A Created AWS/Azure Account
 - A Successful Connection from MC
 4.0 to AWS/Azure
- 30 points: Data transmission
 - Connect to a database of your choice.
 - Share data of the timeline of the missions done on the moon.
 - Share the data of the result of the data analysis.
- 50 points: AloT Integration
 - Share data of the position of each coloured block.

5.3 Scoring Cards

Pioneers Scoring Card

Pioneers Scoring								
Mission	Base Points	Extra Points (Screen UI)	Extra Points (MC Cloud)	Extra Points (MQTT)	Bonu s Point s	Total Points	Match 1	Match 2
Transport to Launch Site	10	5	5	10	5	35		
Fuel the Rocket	10	5	5	10		30		
Moon Launch	20	5	5	10		40		
Moon Landing	10	5	5	10		30		
Collecting Moon Soil Samples	10 /20	5	5	10		40		
Collecting Abnormal Region Samples	10/ 20	5	5	10		40		
Recognizing the Abnormal Soil Sample	10/ 15					15		
Transporting the Abnormal Soil Sample	10/15/20	5	5	10		40		
Communicate with Earth	20				20	40		
Returning to Earth	20	5	5	10		40		
Bonus Mission	20/30/50				50	100		
Total Points	215	40	40	80	75	450		
	Total	Time						
Final Points	(Added Po	ints from I	Match 1 and	Match 2)				

Team Captain Signature: _	
Referee Signature:	
Date:	

Teams Blueprint Scoring Card

	Team's Blueprint Scoring Card		
Dimension	Evaluation Criteria	Points	Comments
	Quality of the design and engineering of the 3D-printed part.	/5	
3D-Printed Component	Integration of the 3D-printed part into the robot's functionality.	_/10	
	Explanation of how the 3D-printed part enhances robot performance.	_/5	
Programming	Assess the logic, efficiency, and complexity of the code written for the robot's tasks.	/15	
	The use of script-based programming to achieve the robot's tasks	/10	
Team Branding	Creativity and alignment of team identity elements with the competition's theme.	/10	
	Representation of team spirit and collaboration through visuals or designs.	/10	
Technical Documentation	Clarity and organization of the Team's Blueprint (includes explanations, diagrams, and visuals)	_/20	
Course Completion Certificates	All team members have completed the Mubarmij Al Emarat course and earned certificates.	/15	
Total Score			

lean Name	•
Category	:
Judge Name	:
Feedback Summary:	
(General observations	s, highlights, and areas for improvement)
Judge's Signature	:
Date	:

5.4 Awards

Awards Table for Pioneers Category						
Award Category	Award Name	Criteria				
	Champion Award	Highest score based on missions. Time used as tiebreaker.				
Based on Points	1st Runner-Up	Second highest score based on missions. Time used as tiebreaker.				
	2nd Runner-Up	Third highest score based on missions. Time used a tiebreaker.				
Based on AioT Integration	AioT Excellence Award	Full points on the bonus mission				
Based on Team's Blueprint	Blueprint Engineers Award	The Blueprint Innovators Award recognizes the team that exemplifies outstanding creativity, engineering excellence, and strategic thinking in developing their Team's Blueprint				

6. Novices & Pioneers Guidelines

Disciplinary Actions

To ensure a fair and safe competition, disciplinary actions will be enforced when rules are violated. There are four levels of disciplinary actions:

1. Warning

- Description: A verbal or written notice indicating a minor rule violation.
- o **Impact:** No points are deducted, but the team is made aware of the violation and is expected to correct the behaviour.

2. Violation

- o **Description:** Issued for repeated violations or a single more serious violation.
- Impact: A 10-point deduction from the team's score.

3. Suspension of Robot for Current Match

- Description: Issued for severe violations or repeated violations after a warning and a violation have been given.
- Impact: The team's robot is suspended for the current match, resulting in zero points for that match. Team can still join for the next matches.

4. Disqualification

- Description: Issued for cheating, unsportsmanlike conduct, safety violations, or continuous non-compliance with the rules.
- o **Impact:** The team is disqualified from the entire competition, and all scores are nullified.

Safety Rules

1. SR1: General Safety

Participants must follow all safety instructions provided by the competition organizers.

2. SR2: Electrical Safety

- Robots must be powered off during adjustments and inspections.
- Use only approved batteries and power sources.
- Any exposed wiring must be properly insulated to prevent short circuits and electrical hazards.

3. SR3: Handling and Movement

- Robots must be handled with care to avoid damage.
- Only designated team members are allowed to move the robot in and out of the competition area.

4. SR4: Emergency Procedures

- In case of any emergency, follow the instructions of the event staff.
- o Familiarize yourself with the location of emergency exits and first aid kits.

Robot Operation Rules

1. RR1: Specifications

Robots must not exceed the following size and weight limits:

Specification	Limit
Max Dimensions	320mm x 320mm x 450mm
Max Weight	6 kg
Max Wheel Diameter	70mm
Max Motor Count	4
Max Servo Count	4

- Only components from the approved list are allowed in the robot construction.
- o The robot must use the MC 4.0 as the controller.

2. RR2: Restarting the Robot

- A robot may be restarted only with the permission of the referee.
- The team must request a restart by saying "Request Reboot."
- o Unauthorized restarts will result in a violation then suspension.

3. RR3: Wi-Fi Connection

- o Teams are responsible for providing their own Wi-Fi connection for MC Cloud and AWS/Azure integration.
- o Interference with other teams' Wi-Fi signals is prohibited and will result in complete disqualification from the current and future competitions.

4. RR4: Use of Phones

- o Phones are allowed only for the purpose of displaying MC Cloud or AWS/Azure data.
- Only one approved phone is to be used during the completion.
- The Robot Pilot is the only one allowed to use the approved phone.
- Phones must be placed in a visible location and should not be used for communication during the match.

5. RR5: Controller Specifications

The controller must be programmed using one of the following **software**:

MATLAB ROS MC Lab

Python Arduino IDE

Participants Operation Rules

1. PR1: Conduct and Behaviour

- Participants must always conduct themselves with professionalism and respect.
- Any form of cheating or unsportsmanlike behaviour will not be tolerated and team will be disqualified from the competition.

2. PR2: Competition Area

- Only team members and authorized personnel are allowed in the competition area.
- Teams must adhere to the schedule and be present at their designated times.

3. PR2: Arena Area

- Only the Robot Pilot and the IoT Engineer is allowed around the arena area during the match.
- Any other person entering the arena without permission will be issued a warning and then result in being asked outside of the coemption area.

4. PR3: Communication

- Verbal communication between team members is allowed, but no external assistance is permitted.
- o Teams must notify the referee if they need to leave the competition area for any reason.

5. PR4: Handling Equipment

- Teams must handle all equipment carefully and return it in good condition.
- Any damage to competition equipment must be reported immediately.

Award Rules

1. AR1: Award Eligibility

- o A team can only win one major award (e.g., Champion, 1st Runner-Up).
- Teams that win a major award are not eligible for other awards.

2. AR2: Award Prioritization

- o If a team qualifies for multiple awards, the higher priority award will be given.
- Priority order: Champion > 1st Runner-Up > 2nd Runner-Up > Other Awards.

3. AR3: Distribution of Awards

- Awards will be distributed based on the final scores and performance criteria.
- Ties will be broken based on the time taken to complete missions.
- o Awards based on points can only be given to 1 team each. Other Awards can be given to up to 2 teams each If there are ties.

Appeal Rules

1. AP1: Scoring Disputes

- Teams may appeal scoring decisions within 30 minutes of the score being posted.
- Appeals must be submitted in writing to the head referee.
- o If there is no dispute at the match and team captain signed the scoring sheet, an appeal will not be accepted.

2. AP2: Appeal Process

- o The appeal will be reviewed by a panel of three judges.
- o The decision of the appeal panel is final.

3. AP3: Grounds for Appeal

Appeals can be made on grounds of scoring errors, rule violations, or procedural errors.

7. Innovators

7.1 Introduction

About Innovators:

The Innovators competition is designed to challenge participants to apply their skills in robotics, AI, IoT, and STEAM to solve real-world problems creatively and effectively. This category is divided into three age groups:

Young Innovators: Ages 7-12

Senior Innovators: Ages 18-24

Junior Innovators: Ages 13-18

Participants will demonstrate their projects, which should align with the annual theme and subthemes, showcasing their innovation and technical skills. The competition emphasizes the integration of AI and IoT technologies and encourages participants to think critically about sustainable development and technological advancement.

Annual Theme: Smart World

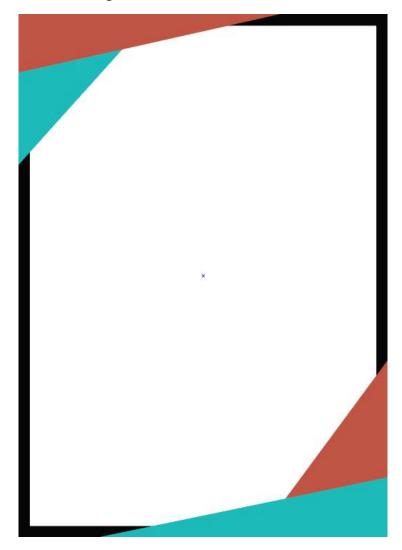
The 2025 theme for the Innovators competition is "Smart World," focusing on creating innovative solutions to improve our living environment through AI, IoT, and sustainable practices. This theme is divided into three subthemes:

Sub-Themes:

Smart Sustainable Cities Participants are tasked with developing projects that address urban challenges such as traffic congestion, pollution, and resource management. Utilizing AI and IoT, these projects should aim to make cities more efficient, sustainable, and livable, aligning with SDG Goal 11 (Sustainable Cities and Communities).

Climate Resilience and Renewable Energy This subtheme focuses on creating solutions to mitigate and adapt to climate change impacts. Projects may include AI-driven climate monitoring systems, IoT-based renewable energy management, and innovative approaches to reducing carbon footprints, aligning with SDG Goals 7 (Affordable and Clean Energy) and 13 (Climate Action).

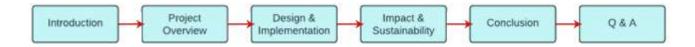
Smart Schools Projects under this subtheme should aim to enhance the educational experience through technology. This includes creating smart classrooms, IoT-based school management systems, and AI-driven personalized learning tools. The goal is to promote inclusive and equitable quality education, aligning with SDG Goal 4 (Quality Education).


7.2 Equipment Specification

Category	Specification
Controller	MC 4.0
Motors & Actuators	Maximum of 4 DC motors with a rated voltage of 6-12V Servos with a torque of up to 10 kg-cm Stepper motors with a resolution of at least 1.8° per step
Sensors	Any sensors up to 5
Construction Materials	Plastic, aluminum, or composite materials 3D-printed components Laser-cut parts from wood, acrylic, or similar materials Fasteners such as screws, nuts, and bolts
Programming languages	Support for both block-based and script-based programming (Python preferred for advanced tasks) MC Lab Python Matlab Arduino IDE ROS
Poster Dimensions	100 x 100 CM Must use Innovators Template

Innovators Poster Template

The poster is available for downloading at this <u>link</u>.



7.3 Project Presentation

This section outlines the process for the project presentation phase of the Innovators competition. It details the steps teams should follow to ensure a clear, engaging, and informative presentation of their projects.

The project presentation is the most important aspect of the Innovators competition. It provides teams with the opportunity to showcase their innovative projects, explain their design and implementation processes, and demonstrate the impact of their solutions. Each team will have 10-15 minutes for their presentation, followed by a Q&A session with the judges.

Presentation Structure

Introduction (2 Minutes)

- Briefly introduce the team members and the project.
- Provide an overview of the project's objective, inspiration, and relevance to the competition's annual theme and subthemes: Sustainable Cities, Climate Resilience and Renewable Energy, and Smart School.

Project Overview (3 Minutes)

- Describe the project in detail, including the problem it addresses and the solution proposed.
- Explain how the project aligns with the Sustainable Development Goals (SDGs).

Design and Implementation (5 Minutes)

- Discuss the design process, including brainstorming, planning, and development stages.
- Highlight the technologies used, particularly Al and IoT integrations.
- Demonstrate the functionality of the project, showcasing key features and components.

Impact and Sustainability (5 Minutes)

- Explain the potential impact of the project on the target community or environment.
- Discuss the project's sustainability and scalability.

Conclusion (2 Minutes)

- Summarize the key points of the presentation.
- Reiterate the significance of the project and its contribution to the theme.

Q&A Session (3 Minutes)

- Judges will ask questions to gain a deeper understanding of the project.
- Teams should be prepared to answer questions related to their design choices, technical challenges, and project impact.

7.4 Assessment Criteria

Innovation & Design Dimension

Sub- dimension	Rating 0	Rating 1	Rating 2	Rating 3	Rating 4	Rating 5
Originality	No originality, entirely copied	Minimal originality, slight modifications	Some originality, basic modifications	Good originality, significant modifications	High originality, innovative approach	Exceptional originality, groundbreaking innovation
Creativity	No creativity, very mundane	Minimal creativity, basic ideas	Some creativity, moderate ideas	Good creativity, innovative ideas	High creativity, unique and engaging ideas	Exceptional creativity, exceptionally engaging and unique ideas
Practicality	Not practical, cannot be implemented	Very limited practicality, major issues	Somewhat practical, several issues	Good practicality, minor issues	High practicality, easily implementable	Exceptional practicality, highly feasible and impactful

Hardware & Software Technology Dimension

Sub- dimension	Rating 0	Rating 1	Rating 2	Rating 3	Rating 4	Rating 5
Structural Stability	No stability, falls apart	Very poor stability, major issues	Some stability, several issues	Good stability, minor issues	High stability, very stable	Exceptional stability, extremely robust
Component Use	No appropriate use of components	Very poor use of components, inappropriate	Somewhat appropriate use of components	Good use of components, mostly appropriate	High use of components, very appropriate	Exceptional use of components, perfectly appropriate
Programming Complexity	ogramming No complexity, Very minimal complexity, basic		Some complexity, moderate logic	Good complexity, well- structured logic	High complexity, advanced logic	Exceptional complexity, highly advanced and optimized logic

AI & IoT Integration Dimension

Sub- dimension	Rating 0	Rating 1	Rating 2	Rating 3	Rating 4	Rating 5
Effective Use of Al	No Al used	Basic AI usage, very limited	Some Al usage, partially effective	Good AI usage, mostly effective	High Al usage, very effective	Exceptional AI usage, highly effective and innovative
Effective Use of IoT	No loT used	Basic IoT usage, very limited	Some IoT usage, partially effective	Good IoT usage, mostly effective	High IoT usage, very effective	Exceptional IoT usage, highly effective and innovative
Integration of AI & IoT	No integration of AI and IoT	Minimal integration, barely functional	Some integration, partially functional	Good integration, mostly functional	High integration, very functional	Exceptional integration, perfectly functional and highly innovative

Communication & Presentation Dimension

Sub- dimension	Rating 0	Rating 1	Rating 2	Rating 3	Rating 4	Rating 5
Communicatio n Skills	Very poor communicatio n, not understandabl e	Poor communicatio n, barely understandabl e	Some communicatio n issues, partially understandabl e	Good communicatio n, mostly clear	High communicatio n, very clear and engaging	Exceptional communicatio n, extremely clear, engaging, and professional
Poster Creativity	No creativity, very basic	Minimal creativity, basic design	Some creativity, moderate design	Good creativity, well-designed	High creativity, very well- designed and engaging	Exceptional creativity, highly engaging, and beautifully designed
Team Contribution	No team contribution, one person dominated	Minimal team contribution, mostly one person	Some team contribution, uneven roles	Good team contribution, mostly even roles	High team contribution, very even roles	Exceptional team contribution, perfectly balanced and collaborative

Sustainability Dimension

Sub- dimension	Rating 0	Rating 1	Rating 2	Rating 3	Rating 4	Rating 5
Environment	No	Minimal	Some	Good	High	Exceptional
al Impact	consideratio	sustainability	sustainable	sustainability	sustainability	sustainability,
	n of	measures,	practices,	measures,	measures,	measurable
	sustainability	some negative	minor	moderate	significant	positive
	, high	impact	environment	positive	positive	environmenta
	negative		al benefits	impact	impact	limpact
	impact					
Alignment	No alignment	Minimal	Some	Good	High	Exceptional
with SDGs	with UN	relevance to	relevance to	alignment	alignment	alignment,
	SDGs	SDGs	SDGs	with relevant	with SDGs,	innovative
				SDGs	clear	approach
					contribution	advancing
						SDGs
Innovation in	No innovative	Minimal	Some	Good	Highly	Groundbreaki
Sustainabilit	approach	innovation in	innovation,	innovative	innovative	ng, highly
У		sustainable	basic	practices	sustainable	creative
		practices	approach		solution	sustainable
						solution

Scoring Sheet

Dimension	Sub-Dimension	Score (0-5)
Innovation & Design	Originality	
	Creativity	
	Practicality	
	Structural Stability	
Hardware & Software Technology	Component Use	
recimology	Programming Complexity	
	Effective use of AI	
Ai & IoT Integration	Effective use of IoT	
	Effective use of AloT	
0	System Architecture	
Communication & Presentation	User Interface Design	
Presentation	Hardware Design	
Substantiality	Environmental Impact	
	Alignment with SDGs	
	Innovation in Sustainability	
Judge's Expertise Rating		
Total Score		
Judge's Comments:		

Judge's Name:	
Judge's Signature:	
Date:	

7.5 Awards

Award Name	Criteria	
Champion Award	Highest total score across all dimensions.	
Innovation Award	Highest score in the Innovation & Design dimension.	
Technical Excellence Award	Highest score in the Hardware & Software Technology dimension.	
Best Presentation Award	Highest score in the Communication & Presentation dimension.	
Sustainability Award	Best integration of sustainable practices in the project that align with SDGs	
Cloud Integration Award	Highest total score across Ai & IoT Integration dimension.	

7.6 Guidelines

This section outlines the guidelines for the Innovators category, ensuring fair play, safety, and clarity throughout the competition. Each guideline is categorized to cover different aspects of the competition.

Presentation Setup and Conduct

- **PRS-001**: Teams must stand by their project display 10 minutes before the scheduled presentation time.
- **PRS-002**: Each team will have 10-15 minutes for their presentation, followed by a Q&A session with the judges.
- PRS-003: Participants should use professional language during their presentation.
- PRS-004: Posters and visual aids must be clear, creative, and directly related to the project.
- **PRS-005**: Teams are responsible for bringing any necessary equipment for their presentation.

Poster and Visual Aids

- **PST-001**: Posters should be no larger than (100 x 100 cm).
- **PST-002**: All posters must be securely mounted on provided display boards.
- PST-003: Posters should include the project title, team name, team members, and a summary of the project.
- PST-004: Posters must be used on the Innovators Template
- **PST-005**: Ensure all visual aids are appropriate for all audiences and do not contain any offensive material.

Project Content and Requirements

- **PJT-001**: The project must align with one of the subthemes: Sustainable Cities, Climate Resilience and Renewable Energy, or Smart Schools.
- PJT-002: Projects should demonstrate the integration of AI and IoT technologies.
- PJT-003: The project must have a practical application and show potential for real-world impact.
- **PJT-004**: Teams must submit an engineering notebook documenting their design process, challenges faced, and how they were overcome.

Equipment and Setup

- **EQT-001**: Teams must bring their own laptops, presentation clickers, and other necessary equipment.
- **EQT-002**: Any IoT devices used in the project must comply with safety standards and not pose any hazards.
- **EQT-003**: Teams must ensure all equipment is set up and tested before the presentation begins.
- **EQT-004**: Power strips and extension cords will be provided; teams should ensure all devices can be connected within the provided power limits.

Judging Criteria

- **JD-001**: Presentations will be judged based on the following dimensions: Al & IoT Integration, Communication Skills, Poster Creativity, Team Contribution, and Project Impact.
- **JD-002**: Each dimension has specific sub-dimensions that will be scored on a scale from 0 to 5.

Awards

- **AWD-001**: Awards will be given for the top three projects, with additional awards for Best Communication, Best Poster, and Best Team Collaboration.
- AWD-002: Awards cannot be shared between teams; each team is eligible for only one award.
- **AWD-003**: In case of a tie, the judges will review the tied projects and decide based on overall presentation and impact.

8. Special Awards

8.1 Engineering Storytelling Award

The Engineering Storytelling Award is your team's opportunity to showcase your engineering journey through a short, engaging **video**. This award goes beyond the robot's performance, highlighting how your team designed, built, and problem-solved throughout the competition. Through this video, you will demonstrate your team's creativity, collaboration, and technical thinking, while presenting the final robot in action. It's your chance to visually share your engineering process, teamwork, and the key moments that made your project unique.

Video Guidelines

- Duration: 30 seconds up to 2 minutes.
- Must be clear, with audible sound or readable captions.
- Should highlight team journey + final robot.

Submission:

- Upload your video to a public platform such as Google Drive, YouTube, or Vimeo.
- Ensure the video is not private
- Each team should submit the video through their assigned mentor.

Notes:

- It is not mandatory to show team members' faces in the video.
- By submitting the video, you agree to allow it to be used for competition-related promotion.
- Videos of winning teams will be presented during the award ceremonies.

What to consider

1. Video Quality & Clarity

- Within the required 1–2 minutes.
- Clear visuals (not shaky or blurry).
- Audio is clear / captions are readable.
- Smooth editing & transitions.

2. Storytelling & Creativity

- \circ Logical flow of the team's journey (idea \rightarrow building \rightarrow competition).
- o Creative use of visuals, narration, music, or effects.
- Overall impact and engagement, is it memorable/inspiring?

3. Team Spirit & Branding

- o Showcases teamwork and collaboration (meetings, discussions, coding, etc.)
- Representation of team branding/identity (logo, T-shirt, theme)

4. Final Robot Showcase

- o Clearly show the final robot, fully assembled and ready for competition.
- o Highlight the robot performing key competition tasks or movements.
- Showcase important aspects of the robot's design, assembly, or any innovative features (including 3D-printed components if applicable).

Scoring Sheet

Engineering Storytelling Award			
Dimension	Evaluation Criteria	Points	Comments
Video Quality & Clarity	Duration 1–2 minutes	/5	
	Clear visuals	/5	
	Audible audio or readable captions	_/5	
	Smooth editing and transitions	/5	
Storytelling & Creativity	Logical flow of the team's journey	/10	
	Overall impact and engagement	/10	
Team Spirit & Branding	Showcases teamwork and collaboration	/10	
	Creativity and alignment of team identity elements with the competition's theme.	_/10	
Final Robot Showcase	Robot is fully assembled and ready for competition.	/15	
	Robot performing key competition tasks is demonstrated.	/10	
	Important design and assembly features, including 3d printed components, are showcased.	/15	
Total Score		/100	

Геат Name	:
Category	:
ludge Name	:
Feedback Summary:	
Judge's Signature	
ruuge 3 Signature	:
Date	: